skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shamberger, Patrick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report an approach for soft-template encapsulation of PCMs vita organocatalyzed photoredox ATRP using silica surfactants with surface-immobilized initiators. 
    more » « less
  2. During martensitic phase transformations in thin films, substrates impact hysteresis by introducing an additional interface, which can inhibit martensite/austenite interface motion. In order to reduce hysteresis, we examine 2.9–14.5 μm thick Ni–Mn–Sn films, which in some cases have been delaminated from the substrates before or after annealing. We compare thermal hysteresis and defect densities at the interface. Delaminating films prior to annealing decreases hysteresis, whereas delaminating films after annealing does not significantly impact hysteresis. Substrate effects are attributed to the thermal expansion mismatch between the film and substrate, resulting in the formation of dislocations at the interface and, consequentially, an increase in frictional resistance to martensite/austenite interface motion. 
    more » « less
  3. The metal-to-insulator transition of VO 2 underpins applications in thermochromics, neuromorphic computing, and infrared vision. Ge alloying is shown to elevate the transition temperature by promoting V–V dimerization, thereby expanding the stability of the monoclinic phase to higher temperatures. By suppressing the propensity for oxygen vacancy formation, Ge alloying renders the hysteresis of the transition exquisitely sensitive to oxygen stoichiometry. 
    more » « less
  4. null (Ed.)
    Abstract There are many applications throughout the military and commercial industries whose thermal profiles are dominated by intermittent and/or periodic pulsed thermal loads. Typical thermal solutions for transient applications focus on providing sufficient continuous cooling to address the peak thermal loads as if operating under steady-state conditions. Such a conservative approach guarantees satisfying the thermal challenge but can result in significant cooling overdesign, thus increasing the size, weight, and cost of the system. Confluent trends of increasing system complexity, component miniaturization, and increasing power density demands are further exacerbating the divergence of the optimal transient and steady-state solutions. Therefore, there needs to be a fundamental shift in the way thermal and packaging engineers approach design to focus on time domain heat transfer design and solutions. Due to the application-dependent nature of transient thermal solutions, it is essential to use a codesign approach such that the thermal and packaging engineers collaborate during the design phase with application and/or electronics engineers to ensure the solution meets the requirements. This paper will provide an overview of the types of transients to consider—from the transients that occur during switching at the chip surface all the way to the system-level transients which transfer heat to air. The paper will cover numerous ways of managing transient heat including phase change materials (PCMs), heat exchangers, advanced controls, and capacitance-based packaging. Moreover, synergies exist between approaches to include application of PCMs to increase thermal capacitance or active control mechanisms that are adapted and optimized for the time constants and needs of the specific application. It is the intent of this transient thermal management review to describe a wide range of areas in which transient thermal management for electronics is a factor of significance and to illustrate which specific implementations of transient thermal solutions are being explored for each area. The paper focuses on the needs and benefits of fundamentally shifting away from a steady-state thermal design mentality to one focused on transient thermal design through application-specific, codesigned approaches. 
    more » « less
  5. null (Ed.)